Compact and Weakly Compact Multipliers on Fourier Algebras of Ultraspherical Hypergroups

نویسندگان

چکیده

A locally compact group G is discrete if and only the Fourier algebra A(G) has a non-zero (weakly) multiplier. We partially extend this result to setting of ultraspherical hypergroups. Let H be an hypergroup let A(H) denote corresponding algebra. will give several characterizations discreteness in terms algebraic properties A(H). also study Arens regularity closed ideals

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Multipliers Results on Compact Hypergroups

A hypergroup is roughly speaking a locally compact Hausdorff space which has enough structure so that a convolution on the corresponding vector space of Radon measures makes it a Banach algebra. Hypergroups generalize in many ways topological groups. In this paper we extend to compact not necessarily commutative hypergroups some basic techniques on multipliers set forth for compact groups in He...

متن کامل

Weakly Compact #?-algebras

1. A complex Banach algebra A is a compact (weakly compact) algebra if its left and right regular representations consist of compact (weakly compact) operators. Let E be any subset of A and denote by Ei and Er the left and right annihilators of E. A is an annihilator algebra if A¡= (0) —Ar, Ir^{fS) for each proper closed left ideal / and Ji t¿ (0) for each proper closed right ideal /. In [6, Th...

متن کامل

Arveson Spectrum On Locally Compact Hypergroups

In this paper we study the concept of Arveson spectrum on locally compact hypergroups and for an important class of compact countable hypergroups . In thiis paper we study the concept of Arveson spectrum on locally compact hypergroups and develop its basic properties for an important class of compact countable hypergroups .

متن کامل

?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups

In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2021

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-020-01651-y